If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=-16t^2+15t+10
We move all terms to the left:
t-(-16t^2+15t+10)=0
We get rid of parentheses
16t^2-15t+t-10=0
We add all the numbers together, and all the variables
16t^2-14t-10=0
a = 16; b = -14; c = -10;
Δ = b2-4ac
Δ = -142-4·16·(-10)
Δ = 836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{836}=\sqrt{4*209}=\sqrt{4}*\sqrt{209}=2\sqrt{209}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{209}}{2*16}=\frac{14-2\sqrt{209}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{209}}{2*16}=\frac{14+2\sqrt{209}}{32} $
| 8z=13 | | 2(5x-9)=72 | | 3/2v+9/2-11/3v=7/24 | | -5(4x+1)=-125 | | -2x-2=-5+x | | x9−1=5 | | 28=4u/7 | | 7/2u=35 | | 9u+1=19 | | 3x-5x=-24 | | -7x+4=-5x+20 | | x+2x+4x=9 | | -10+3q=-2q | | 2x+8=20+3x | | 6v2+30v=0 | | f/7=22 | | 10x-3/5=x/6 | | 2n^2n+4-16=0 | | 2n^2+4-16=0 | | 35+5m=95 | | 2x-6=-x+30 | | 5x-17=6x+39 | | 6g+12=24 | | 1/4(t+3)=14 | | 5x/8=-13 | | 3z(z-4)=0 | | v=(3.14)(4)20 | | 1x+1x+1x+-5=19 | | 2x+10+x+x=90 | | 16=8^-x-3 | | (2x+9)(x-5)=0 | | (2x+9)(x-)=0 |